Smart RAG nodes are intelligent RAG (Retrieval-Augmented Generation) components that combine document processing, chunking, and retrieval operations into a single, optimized unit. This comprehensive guide covers all aspects of managing smart RAG nodes, from configuration to advanced optimization strategies.

What are Smart RAG Nodes?

Smart RAG nodes are all-in-one RAG components that automatically handle:
  • Document Processing: Intelligent document ingestion and preparation
  • Chunking: Automated text segmentation with optimal chunk sizes
  • Embedding Generation: Vector embeddings for semantic search
  • Retrieval: Query-based document retrieval with configurable Top K
  • Quality Metrics: Built-in evaluation and performance tracking

Key Benefits

  • Simplified Workflow: Single node handles multiple RAG operations
  • Optimized Performance: Integrated processing reduces overhead
  • Intelligent Defaults: Pre-configured settings for common use cases
  • Scalable Architecture: Efficient handling of large document collections
  • Quality Monitoring: Built-in metrics for retrieval effectiveness

Available Endpoints

Smart RAG nodes are managed through two primary endpoints:
EndpointMethodPurposeDocumentation
List Smart RAG NodesGETRetrieve all smart RAG nodes from a flowπŸ“„ List Documentation
Update Smart RAG ConfigurationPATCHModify smart RAG node settingsπŸ”§ Update Documentation

Base URL Structure

https://{flow_name}.flows.graphorlm.com/smart-rag
  • : Your flow identifier
  • All endpoints require API token authentication
  • Content-Type: application/json for update operations

Core Concepts

Node Structure

Smart RAG nodes follow the standard GraphorLM node structure:
{
  "id": "smart-rag-1748287628685",
  "type": "smart-rag",
  "position": {"x": 500, "y": 300},
  "style": {"height": 200, "width": 320},
  "data": {
    "name": "Intelligent Document Processing",
    "config": {
      "topK": 10
    },
    "result": {
      "updated": true,
      "processing": false,
      "waiting": false,
      "has_error": false,
      "updatedMetrics": true,
      "total_processed": 1250,
      "total_chunks": 420,
      "total_retrieved": 85
    }
  }
}

Configuration Parameters

Smart RAG nodes have a focused configuration approach:
ParameterTypeDefaultDescription
topKinteger | null5Number of top results to retrieve. Set to null for unlimited processing

Result Metrics

Smart RAG nodes provide comprehensive result tracking:
FieldTypeDescription
updatedbooleanNode processing status with current configuration
processingbooleanWhether the node is currently processing
waitingbooleanWhether the node is waiting for dependencies
has_errorbooleanError status indicator
updatedMetricsbooleanWhether evaluation metrics have been computed
total_processedintegerTotal number of documents processed
total_chunksintegerNumber of chunks generated during processing
total_retrievedintegerNumber of documents retrieved in recent queries

Smart RAG Strategies

Smart RAG nodes support multiple operational strategies based on the Top K configuration:

High-Precision Strategy

Configuration: topK: 3-5
{
  "config": {
    "topK": 5
  }
}
Characteristics:
  • Focus: Maximum relevance per result
  • Resource Usage: Low system overhead
  • Processing Speed: Fastest retrieval times
  • Quality Profile: High precision, moderate recall
Best For:
  • Critical decision support systems
  • Expert knowledge applications
  • Factual question answering
  • High-stakes information retrieval
Trade-offs:
  • Strengths: Fast, resource-efficient, highly relevant results
  • Limitations: May miss edge cases or broader context

Balanced Strategy

Configuration: topK: 8-12
{
  "config": {
    "topK": 10
  }
}
Characteristics:
  • Focus: Optimal balance of precision and coverage
  • Resource Usage: Moderate system consumption
  • Processing Speed: Good retrieval performance
  • Quality Profile: Balanced precision and recall
Best For:
  • General-purpose knowledge management
  • Customer support applications
  • Educational content retrieval
  • Business intelligence queries
Trade-offs:
  • Strengths: Good overall performance, versatile application
  • Limitations: Not specialized for extreme precision or coverage

Comprehensive Strategy

Configuration: topK: 15-25
{
  "config": {
    "topK": 20
  }
}
Characteristics:
  • Focus: Thorough coverage and exploration
  • Resource Usage: Higher system consumption
  • Processing Speed: Moderate retrieval times
  • Quality Profile: High recall, good precision
Best For:
  • Research and discovery applications
  • Content exploration systems
  • Comprehensive analysis tools
  • Academic research platforms
Trade-offs:
  • Strengths: Comprehensive coverage, discovery potential
  • Limitations: Higher resource requirements, longer processing

Unlimited Strategy

Configuration: topK: null
{
  "config": {
    "topK": null
  }
}
Characteristics:
  • Focus: Complete document analysis
  • Resource Usage: Maximum system consumption
  • Processing Speed: Longest processing times
  • Quality Profile: Maximum recall, comprehensive coverage
Best For:
  • Exhaustive research projects
  • Complete document analysis
  • Investigation and audit systems
  • Resource-unlimited scenarios
Trade-offs:
  • Strengths: Complete coverage, no missed information
  • Limitations: Highest resource usage, longest processing times

Strategy Selection Matrix

Use CasePrecision NeedCoverage NeedResource ConstraintsRecommended Strategy
Critical DecisionsHighLowHighHigh-Precision (3-5)
General Q&AMediumMediumMediumBalanced (8-12)
ResearchMediumHighLowComprehensive (15-25)
Exhaustive AnalysisLowMaximumNoneUnlimited (null)
Real-time SystemsHighLowHighHigh-Precision (3-5)
Content DiscoveryLowHighMediumComprehensive (15-25)

Common Workflows

Basic Smart RAG Workflow

Configuration Optimization Workflow

Multi-Strategy Implementation

Authentication & Authorization

All smart RAG endpoints require API token authentication:
Authorization: Bearer YOUR_API_TOKEN

Token Requirements

  • Scope: Must have flow management permissions
  • Expiry: Check token validity before operations
  • Security: Use HTTPS for all API communications
Generate API tokens through the API Tokens guide.

Response Formats

Standard Success Response

{
  "success": true,
  "message": "Operation completed successfully",
  "node_id": "smart-rag-1748287628685"
}

Error Response Format

{
  "detail": "Descriptive error message"
}

Common Status Codes

CodeMeaningAction Required
200SuccessContinue with result
400Bad RequestCheck request format
401UnauthorizedVerify API token
404Not FoundCheck flow/node existence
422Validation ErrorReview configuration parameters
500Server ErrorContact support if persistent

Integration Examples

Smart RAG Performance Monitor

import requests
import time
from typing import Dict, List, Any, Optional

class SmartRagPerformanceMonitor:
    def __init__(self, flow_name: str, api_token: str):
        self.flow_name = flow_name
        self.api_token = api_token
        self.base_url = f"https://{flow_name}.flows.graphorlm.com"
        self.headers = {"Authorization": f"Bearer {api_token}"}
    
    def get_all_nodes(self) -> List[Dict[str, Any]]:
        """Retrieve all smart RAG nodes"""
        response = requests.get(f"{self.base_url}/smart-rag", headers=self.headers)
        response.raise_for_status()
        return response.json()
    
    def analyze_performance(self) -> Dict[str, Any]:
        """Comprehensive performance analysis"""
        nodes = self.get_all_nodes()
        
        analysis = {
            "summary": {
                "total_nodes": len(nodes),
                "active_nodes": 0,
                "processing_nodes": 0,
                "error_nodes": 0,
                "nodes_with_metrics": 0
            },
            "resource_usage": {
                "low": 0,
                "medium": 0,
                "high": 0,
                "unlimited": 0
            },
            "performance_distribution": {},
            "throughput_metrics": {
                "total_processed": 0,
                "total_chunks": 0,
                "total_retrieved": 0,
                "processing_efficiency": 0
            },
            "quality_indicators": {
                "metrics_enabled": 0,
                "avg_retrieval_rate": 0
            },
            "recommendations": []
        }
        
        total_top_k = 0
        nodes_with_top_k = 0
        
        for node in nodes:
            config = node.get("data", {}).get("config", {})
            result = node.get("data", {}).get("result", {})
            
            # Node status analysis
            if result.get("processing"):
                analysis["summary"]["processing_nodes"] += 1
            elif result.get("has_error"):
                analysis["summary"]["error_nodes"] += 1
            elif result.get("updated"):
                analysis["summary"]["active_nodes"] += 1
            
            # Metrics tracking
            if result.get("updatedMetrics"):
                analysis["summary"]["nodes_with_metrics"] += 1
                analysis["quality_indicators"]["metrics_enabled"] += 1
            
            # Resource usage categorization
            top_k = config.get("topK")
            if top_k is None:
                analysis["resource_usage"]["unlimited"] += 1
            elif top_k <= 5:
                analysis["resource_usage"]["low"] += 1
            elif top_k <= 15:
                analysis["resource_usage"]["medium"] += 1
            else:
                analysis["resource_usage"]["high"] += 1
            
            # Performance distribution
            if top_k is not None:
                performance_key = f"topK_{top_k}"
                analysis["performance_distribution"][performance_key] = (
                    analysis["performance_distribution"].get(performance_key, 0) + 1
                )
                total_top_k += top_k
                nodes_with_top_k += 1
            
            # Throughput metrics
            if result.get("total_processed"):
                analysis["throughput_metrics"]["total_processed"] += result["total_processed"]
            if result.get("total_chunks"):
                analysis["throughput_metrics"]["total_chunks"] += result["total_chunks"]
            if result.get("total_retrieved"):
                analysis["throughput_metrics"]["total_retrieved"] += result["total_retrieved"]
        
        # Calculate averages and efficiency
        if nodes_with_top_k > 0:
            avg_top_k = total_top_k / nodes_with_top_k
            analysis["performance_distribution"]["average_top_k"] = round(avg_top_k, 1)
        
        # Processing efficiency calculation
        total_processed = analysis["throughput_metrics"]["total_processed"]
        total_chunks = analysis["throughput_metrics"]["total_chunks"]
        if total_processed > 0:
            analysis["throughput_metrics"]["processing_efficiency"] = round(
                total_chunks / total_processed, 2
            )
        
        # Retrieval rate calculation
        total_retrieved = analysis["throughput_metrics"]["total_retrieved"]
        if total_chunks > 0:
            analysis["quality_indicators"]["avg_retrieval_rate"] = round(
                (total_retrieved / total_chunks) * 100, 1
            )
        
        # Generate recommendations
        analysis["recommendations"] = self._generate_recommendations(analysis)
        
        return analysis
    
    def _generate_recommendations(self, analysis: Dict[str, Any]) -> List[str]:
        """Generate optimization recommendations"""
        recommendations = []
        summary = analysis["summary"]
        resource_usage = analysis["resource_usage"]
        quality = analysis["quality_indicators"]
        
        # Node health recommendations
        if summary["error_nodes"] > 0:
            recommendations.append(
                f"Address {summary['error_nodes']} nodes with errors to improve system reliability"
            )
        
        if summary["processing_nodes"] > summary["total_nodes"] * 0.3:
            recommendations.append(
                "High percentage of nodes are processing - consider resource allocation review"
            )
        
        # Resource optimization recommendations
        if resource_usage["unlimited"] > 0:
            recommendations.append(
                f"Review {resource_usage['unlimited']} unlimited nodes for resource optimization opportunities"
            )
        
        if resource_usage["high"] > resource_usage["low"] + resource_usage["medium"]:
            recommendations.append(
                "Consider balancing resource usage - many nodes use high Top K values"
            )
        
        # Quality improvement recommendations
        metrics_coverage = quality["metrics_enabled"] / summary["total_nodes"] * 100
        if metrics_coverage < 80:
            recommendations.append(
                f"Enable metrics on more nodes - currently only {metrics_coverage:.1f}% have metrics enabled"
            )
        
        # Performance recommendations
        avg_retrieval_rate = quality["avg_retrieval_rate"]
        if avg_retrieval_rate > 0:
            if avg_retrieval_rate < 10:
                recommendations.append(
                    "Low retrieval rate detected - consider increasing Top K values for better coverage"
                )
            elif avg_retrieval_rate > 50:
                recommendations.append(
                    "High retrieval rate - consider optimizing Top K values for better efficiency"
                )
        
        return recommendations
    
    def print_performance_report(self, analysis: Dict[str, Any]):
        """Print formatted performance report"""
        print("πŸ€– Smart RAG Performance Analysis Report")
        print("=" * 50)
        print(f"Flow: {self.flow_name}")
        print(f"Analysis Date: {time.strftime('%Y-%m-%d %H:%M:%S')}")
        
        # Summary section
        summary = analysis["summary"]
        print(f"\nπŸ“Š Node Summary:")
        print(f"  Total Nodes: {summary['total_nodes']}")
        print(f"  Active Nodes: {summary['active_nodes']}")
        print(f"  Processing Nodes: {summary['processing_nodes']}")
        print(f"  Error Nodes: {summary['error_nodes']}")
        print(f"  Nodes with Metrics: {summary['nodes_with_metrics']}")
        
        # Resource usage section
        resource = analysis["resource_usage"]
        print(f"\n⚑ Resource Usage Distribution:")
        print(f"  Low Usage (≀5): {resource['low']} nodes")
        print(f"  Medium Usage (6-15): {resource['medium']} nodes")
        print(f"  High Usage (>15): {resource['high']} nodes")
        print(f"  Unlimited Usage: {resource['unlimited']} nodes")
        
        # Performance metrics
        perf = analysis["performance_distribution"]
        if "average_top_k" in perf:
            print(f"\n🎯 Performance Metrics:")
            print(f"  Average Top K: {perf['average_top_k']}")
        
        # Throughput analysis
        throughput = analysis["throughput_metrics"]
        print(f"\nπŸ“ˆ Throughput Analysis:")
        print(f"  Total Documents Processed: {throughput['total_processed']:,}")
        print(f"  Total Chunks Generated: {throughput['total_chunks']:,}")
        print(f"  Total Documents Retrieved: {throughput['total_retrieved']:,}")
        print(f"  Processing Efficiency: {throughput['processing_efficiency']} chunks/doc")
        
        # Quality indicators
        quality = analysis["quality_indicators"]
        print(f"\n🎯 Quality Indicators:")
        print(f"  Metrics Coverage: {(quality['metrics_enabled']/summary['total_nodes']*100):.1f}%")
        if quality["avg_retrieval_rate"] > 0:
            print(f"  Average Retrieval Rate: {quality['avg_retrieval_rate']}%")
        
        # Recommendations
        if analysis["recommendations"]:
            print(f"\nπŸ’‘ Optimization Recommendations:")
            for i, rec in enumerate(analysis["recommendations"], 1):
                print(f"  {i}. {rec}")
        
        print("\n" + "=" * 50)

# Usage example
monitor = SmartRagPerformanceMonitor("my-rag-pipeline", "YOUR_API_TOKEN")
analysis = monitor.analyze_performance()
monitor.print_performance_report(analysis)

Smart RAG Configuration Optimizer

class SmartRagConfigurationOptimizer {
  constructor(flowName, apiToken) {
    this.flowName = flowName;
    this.apiToken = apiToken;
    this.baseUrl = `https://${flowName}.flows.graphorlm.com`;
  }

  async getAllNodes() {
    const response = await fetch(`${this.baseUrl}/smart-rag`, {
      headers: { 'Authorization': `Bearer ${this.apiToken}` }
    });
    
    if (!response.ok) {
      throw new Error(`Failed to fetch nodes: ${response.statusText}`);
    }
    
    return await response.json();
  }

  async optimizeConfiguration(nodeId, targetProfile = 'balanced') {
    const profiles = {
      'precision': { topK: 5, description: 'High-precision, low resource usage' },
      'balanced': { topK: 10, description: 'Balanced precision and coverage' },
      'comprehensive': { topK: 20, description: 'High coverage, thorough results' },
      'unlimited': { topK: null, description: 'Complete analysis, maximum resources' }
    };

    const profile = profiles[targetProfile];
    if (!profile) {
      throw new Error(`Invalid profile: ${targetProfile}. Available: ${Object.keys(profiles).join(', ')}`);
    }

    console.log(`🎯 Optimizing node ${nodeId} for ${targetProfile} profile`);
    console.log(`   Configuration: Top K = ${profile.topK || 'unlimited'}`);
    console.log(`   Description: ${profile.description}`);

    const response = await fetch(`${this.baseUrl}/smart-rag/${nodeId}`, {
      method: 'PATCH',
      headers: {
        'Authorization': `Bearer ${this.apiToken}`,
        'Content-Type': 'application/json'
      },
      body: JSON.stringify({ config: { topK: profile.topK } })
    });

    if (!response.ok) {
      throw new Error(`Optimization failed: ${response.statusText}`);
    }

    const result = await response.json();
    console.log(`βœ… ${result.message}`);
    return result;
  }

  async batchOptimization(optimizations) {
    console.log(`πŸ”„ Starting batch optimization for ${optimizations.length} nodes`);
    const results = [];

    for (const { nodeId, profile } of optimizations) {
      try {
        const result = await this.optimizeConfiguration(nodeId, profile);
        results.push({ nodeId, profile, success: true, result });
        
        // Small delay to avoid overwhelming the API
        await new Promise(resolve => setTimeout(resolve, 500));
      } catch (error) {
        console.error(`❌ Failed to optimize ${nodeId}: ${error.message}`);
        results.push({ nodeId, profile, success: false, error: error.message });
      }
    }

    this.generateBatchReport(results);
    return results;
  }

  generateBatchReport(results) {
    console.log('\nπŸ“‹ Batch Optimization Report');
    console.log('============================');
    
    const successful = results.filter(r => r.success);
    const failed = results.filter(r => !r.success);
    
    console.log(`Total Operations: ${results.length}`);
    console.log(`Successful: ${successful.length}`);
    console.log(`Failed: ${failed.length}`);
    
    if (successful.length > 0) {
      console.log('\nβœ… Successful Optimizations:');
      successful.forEach(({ nodeId, profile }) => {
        console.log(`   ${nodeId} β†’ ${profile} profile`);
      });
    }
    
    if (failed.length > 0) {
      console.log('\n❌ Failed Optimizations:');
      failed.forEach(({ nodeId, profile, error }) => {
        console.log(`   ${nodeId} (${profile}): ${error}`);
      });
    }
  }

  async recommendOptimizations() {
    const nodes = await this.getAllNodes();
    const recommendations = [];

    console.log('πŸ” Analyzing nodes for optimization opportunities...\n');

    for (const node of nodes) {
      const config = node.data.config || {};
      const result = node.data.result || {};
      const topK = config.topK;
      const nodeName = node.data.name;

      let recommendation = null;

      // Analysis logic
      if (result.has_error) {
        recommendation = {
          nodeId: node.id,
          nodeName,
          currentTopK: topK,
          issue: 'Node has errors',
          suggestedProfile: 'precision',
          reason: 'Reduce resource usage to address stability issues',
          priority: 'high'
        };
      } else if (result.processing && topK > 20) {
        recommendation = {
          nodeId: node.id,
          nodeName,
          currentTopK: topK,
          issue: 'Long processing time with high Top K',
          suggestedProfile: 'balanced',
          reason: 'Balance performance and quality',
          priority: 'medium'
        };
      } else if (topK === null && !result.updatedMetrics) {
        recommendation = {
          nodeId: node.id,
          nodeName,
          currentTopK: topK,
          issue: 'Unlimited processing without metrics',
          suggestedProfile: 'comprehensive',
          reason: 'Limit resource usage and enable monitoring',
          priority: 'medium'
        };
      } else if (topK && topK < 3) {
        recommendation = {
          nodeId: node.id,
          nodeName,
          currentTopK: topK,
          issue: 'Very low Top K may limit coverage',
          suggestedProfile: 'balanced',
          reason: 'Improve result coverage while maintaining efficiency',
          priority: 'low'
        };
      }

      if (recommendation) {
        recommendations.push(recommendation);
      }
    }

    this.printRecommendations(recommendations);
    return recommendations;
  }

  printRecommendations(recommendations) {
    if (recommendations.length === 0) {
      console.log('βœ… No optimization recommendations - all nodes appear well-configured');
      return;
    }

    console.log(`πŸ’‘ Found ${recommendations.length} optimization opportunities:\n`);

    const byPriority = {
      high: recommendations.filter(r => r.priority === 'high'),
      medium: recommendations.filter(r => r.priority === 'medium'),
      low: recommendations.filter(r => r.priority === 'low')
    };

    ['high', 'medium', 'low'].forEach(priority => {
      if (byPriority[priority].length > 0) {
        const icon = priority === 'high' ? 'πŸ”΄' : priority === 'medium' ? '🟑' : '🟒';
        console.log(`${icon} ${priority.toUpperCase()} Priority (${byPriority[priority].length} items):`);
        
        byPriority[priority].forEach(rec => {
          console.log(`   πŸ“ ${rec.nodeName} (${rec.nodeId})`);
          console.log(`      Issue: ${rec.issue}`);
          console.log(`      Current Top K: ${rec.currentTopK || 'unlimited'}`);
          console.log(`      Suggested: ${rec.suggestedProfile} profile`);
          console.log(`      Reason: ${rec.reason}\n`);
        });
      }
    });
  }
}

// Usage examples
const optimizer = new SmartRagConfigurationOptimizer('my-rag-pipeline', 'YOUR_API_TOKEN');

// Single node optimization
optimizer.optimizeConfiguration('smart-rag-123', 'balanced').catch(console.error);

// Batch optimization
const batchOps = [
  { nodeId: 'smart-rag-123', profile: 'precision' },
  { nodeId: 'smart-rag-456', profile: 'balanced' },
  { nodeId: 'smart-rag-789', profile: 'comprehensive' }
];
optimizer.batchOptimization(batchOps).catch(console.error);

// Get recommendations
optimizer.recommendOptimizations().catch(console.error);

Best Practices

Configuration Management

  • Start with Defaults: Begin with balanced configuration (Top K = 10) and adjust based on results
  • Incremental Changes: Make small adjustments and measure impact before larger changes
  • Environment-Specific Settings: Use different configurations for development, staging, and production
  • Documentation: Maintain clear records of configuration decisions and their rationale

Performance Optimization

Resource Management

  • Monitor System Impact: Track resource usage across different Top K settings
  • Balance Quality vs Efficiency: Higher Top K improves coverage but increases resource consumption
  • Scaling Considerations: Plan resource allocation for peak query volumes
  • Graceful Degradation: Implement fallback strategies for resource constraints

Processing Efficiency

  • Batch Operations: Process multiple queries efficiently through smart batching
  • Caching Strategies: Implement intelligent caching for frequently accessed results
  • Load Distribution: Balance processing load across multiple smart RAG nodes
  • Asynchronous Processing: Use background processing for non-critical operations

Quality Assurance

Metrics and Monitoring

  • Enable Metrics: Activate evaluation metrics on all production nodes
  • Regular Assessment: Schedule periodic quality reviews and optimizations
  • User Feedback Integration: Incorporate user feedback into quality measurements
  • Comparative Analysis: Compare performance across different configurations

Continuous Improvement

  • A/B Testing: Test different configurations with real user queries
  • Performance Baselines: Establish and maintain performance benchmarks
  • Quality Regression Detection: Monitor for quality degradation over time
  • Optimization Cycles: Implement regular optimization review cycles

Operational Excellence

Monitoring and Alerting

  • Health Checks: Implement comprehensive node health monitoring
  • Performance Alerts: Set up alerts for performance degradation
  • Resource Monitoring: Track system resource consumption patterns
  • Error Tracking: Monitor and respond to processing errors promptly

Maintenance and Updates

  • Regular Reviews: Schedule monthly configuration reviews
  • Update Coordination: Coordinate smart RAG updates with system changes
  • Version Control: Maintain configuration version history
  • Rollback Procedures: Have tested rollback procedures for configuration changes

Optimization Cycles

  • Monthly Reviews: Assess smart RAG performance and resource usage monthly
  • Quarterly Optimization: Implement major optimization changes quarterly
  • Annual Strategy Review: Review overall smart RAG strategy annually
  • Continuous Monitoring: Monitor key metrics continuously

Troubleshooting

Advanced Features

Intelligent Resource Management

  • Dynamic Top K: Adjust Top K based on query complexity and available resources
  • Performance Prediction: Predict processing resource needs before execution
  • Resource Alerts: Automatic alerts when approaching resource thresholds
  • Usage Analytics: Detailed analysis of smart RAG usage patterns

Quality Optimization

  • A/B Testing Framework: Built-in support for comparing smart RAG strategies
  • Quality Regression Detection: Automatic detection of quality degradation
  • User Feedback Integration: Incorporate user ratings into optimization
  • Contextual Adaptation: Adjust behavior based on query context

Integration Capabilities

  • Multi-Flow Coordination: Coordinate smart RAG nodes across multiple flows
  • External System Integration: Connect with external knowledge bases
  • Real-time Updates: Dynamic configuration updates without downtime
  • API Ecosystem: Rich API ecosystem for custom integrations

Use Cases by Industry

Technology & Software

  • Documentation Search: Technical documentation and API reference
  • Code Knowledge: Code repository search and analysis
  • Support Systems: Technical support and troubleshooting
  • Decision: Precision-focused strategy (Top K = 3-5)

Healthcare & Life Sciences

  • Medical Research: Research paper and clinical trial analysis
  • Knowledge Management: Medical knowledge base queries
  • Diagnostic Support: Symptom and diagnosis information
  • Decision: Comprehensive strategy (Top K = 15-20)

Financial Services

  • Regulatory Compliance: Regulation and compliance document search
  • Market Research: Financial analysis and market intelligence
  • Risk Assessment: Risk evaluation and compliance checking
  • Decision: Balanced strategy (Top K = 8-12)

Education & Research

  • Academic Research: Research paper and literature review
  • Educational Content: Learning material and course content
  • Knowledge Discovery: Exploratory research and analysis
  • Decision: Unlimited strategy (Top K = null) for comprehensive coverage
  • Case Law Research: Legal precedent and case analysis
  • Document Review: Contract and legal document analysis
  • Compliance Checking: Regulatory compliance verification
  • Decision: Comprehensive strategy (Top K = 15-25)

Migration and Maintenance

From Traditional RAG

  1. Assessment: Evaluate current RAG pipeline components
  2. Mapping: Map existing functionality to smart RAG features
  3. Configuration: Set up equivalent smart RAG configurations
  4. Testing: Validate performance and quality equivalence
  5. Gradual Migration: Phase migration to minimize disruption

Version Management

  • Configuration Versioning: Track configuration changes over time
  • Rollback Procedures: Quick rollback to previous configurations
  • Change Documentation: Document all configuration changes
  • Impact Assessment: Evaluate impact of changes before implementation

Capacity Planning

  • Growth Projection: Plan for increased query volumes
  • Resource Scaling: Scale resources based on usage patterns
  • Performance Benchmarking: Maintain performance benchmarks
  • Optimization Scheduling: Schedule regular optimization reviews

Relationship with Other Endpoints

Smart RAG nodes integrate with the broader GraphorLM ecosystem:

Dataset Integration

  • Input Source: Dataset nodes provide document input to smart RAG nodes
  • File Management: Smart RAG automatically processes files from connected datasets
  • Update Coordination: Dataset changes trigger smart RAG reprocessing

Flow Management

  • Flow Orchestration: Smart RAG nodes participate in larger flow orchestrations
  • Dependency Management: Proper handling of node dependencies and execution order
  • State Management: Coordinate processing state across flow components

Metrics and Evaluation

  • Quality Metrics: Integration with evaluation and metrics systems
  • Performance Tracking: Built-in performance and resource usage tracking
  • Reporting: Comprehensive reporting integration with GraphorLM analytics

Next Steps

Explore related documentation to maximize your smart RAG implementation: