Comprehensive guide to RAPTOR RAG nodes and hierarchical tree construction via the GraphorLM REST API
/{flow_name}/raptor-rag
Retrieve all RAPTOR RAG nodes with
hierarchical tree metrics, clustering statistics, and multi-level
performance data./{flow_name}/raptor-rag/{node_id}
Configure hierarchical tree
parameters including retrieval depth and maximum tree levels for optimal
abstraction.Parameter | Type | Range | Description |
---|---|---|---|
topK | integer | null | 1-100 or null | Number of top results to retrieve from hierarchical tree traversal |
max_level | integer | 2-8 | Maximum depth of tree hierarchy for recursive abstraction |
Metric | Description | Optimization Impact |
---|---|---|
tree_levels | Actual levels built in the hierarchy | Higher levels = richer abstractions |
total_clusters | Clusters created across all tree levels | More clusters = finer granularity |
total_summaries | Summary nodes generated through abstraction | More summaries = better hierarchy quality |
clustering_ratio | clusters/chunks ratio | Optimal range: 0.5-0.8 for balanced structure |
summarization_ratio | summaries/clusters ratio | Higher ratios indicate effective abstraction |
tree_density | summaries per level | Balanced density ensures traversal efficiency |
Use Case Type | Document Count | Complexity | Recommended Strategy | Top K | Max Level |
---|---|---|---|---|---|
Legal Analysis | 100-500 | High | Precision-Focused | 10 | 3 |
Medical Research | 200-800 | High | Precision-Focused | 15 | 3 |
Knowledge Base | 500-2000 | Medium | Balanced Hierarchy | 25 | 4 |
Research Papers | 800-3000 | Medium | Balanced Hierarchy | 30 | 4 |
Literature Review | 1000-5000 | High | Comprehensive Coverage | 50 | 5 |
Discovery Research | 2000+ | Very High | Comprehensive Coverage | 60 | 5 |
Academic Survey | 3000+ | Very High | Unlimited Exploration | null | 6 |
Multi-Domain Analysis | 5000+ | Very High | Unlimited Exploration | null | 6 |
Tree Construction Failures
High Memory Usage
Slow Hierarchical Retrieval
Configuration Conflicts